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Abstract 

It is shown that the embedding of covalent clusters with the help of pseudo atoms 
and thefullerene ~ electronic structure of amorphous carbon can be studied by the same 
formalism. Tight-binding model calculations were done for silicon clusters. It was 
found that the covalent clusters often have topologically determined energy levels that 
are cleared out from the spectrum in the presence of embedding. 

1. Introduct ion 

Embedding of  carbon and silicon clusters can be divided into two classes. In 
the present paper, we call these two classes Embedding 1 (EM1) and Embedding 2 
(EM2). In the first case, EM1, we are interested in the embedding of  the whole 
cluster into the bulk [1-10] .  In the second case, EM2, the usual embedding is 
followed by a cr-fullerene ~r (cr-F~r) separation [11,12]. The cr-F~r separation is 
very similar to the or-~r separation. An example for EM1 is the calculation where 
the silicon or carbon surface is examined by a cluster that is embedded into the 
bulk [3,4]. One can find examples for EM2 in the study of  amorphous 
carbon [11,12]. In an amorphous carbon structure, there are diamond-like and 
graphite-like atoms. The diamond-like atoms are fourfold coordinated and the graphite- 
like atoms are threefold coordinated. Graphite-like atoms form three localized ff 
states plus a delocalized ~r state. As the graphite-like atoms and their neighbors are 
not in a plane, special care must be taken for the study of  these atoms [13-16] .  
Kroto [14] proposed the name of  fullerene for the class of  all closed carbon cages 
that are composed of  threefold-coordinated carbon atoms. We call the ~r states of  
these threefold-coordinated atoms fullerene Ir (Fzc) states. 

One of  the greatest problems of  embedding of  covalent clusters is the boundary 
condition. There are periodic [17-24]  and non-periodic [ 1 - 1 0 , 2 5 - 2 7 ]  boundary 
conditions. In the present paper, we are dealing with non-periodic boundary conditions. 
In EM1, the dangling bonds are saturated by hydrogen atoms [ 1 - 1 0 ]  or by pseudo 
atoms [3,4, 2 5 - 2 7 ] .  There are methods where the influence of  the bulk is taken into 
account by a perturbation potential [6]. Theoretical calculations [3,4] and experimental 
results [28, 29] show that the hydrogen atom is not an appropriate boundary condition 
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for silicon clusters. In EM2, there is no problem for the boundary conditions, and 
the motion offullerene zg electrons is described by an effective model Hamiltonian. 

The purpose of this paper is to show that the two kinds of embeddings, EM1 
and EM2, can be described by the same formalism using hybrid orbitals. These 
hybrid orbitals are associated to pseudo atoms. It will also be demonstrated by 
numerical calculations that the covalent clusters have topologically determined 
energy levels. The embedding procedure clears out these levels from the one electronic 
energy spectrum. Using a tight-binding method and first-neighbor interactions, the 
topologically determined levels are independent of the actual position of the atoms. 
They are determined by the topological arrangement of the atoms. The influence of 
pseudo atoms on the one-electron energy levels of the clusters will also be discussed. 

2. Embedding by pseudo atoms 

Let us suppose that our system of atoms is described by the effective Hamiltonian 
H. This Hamiltonian can be the Hiickel Hamiltonian in the Htickel theory, the tight- 
binding Hamiltonian in a tight-binding approximation and the corresponding Fockian 
in any other method. In our LCAO calculation, ~o 1, q~2 . . . . .  tpn are the atomic 
orbitals. We change this basis with the help of the following T and O transformations: 

gl 

q)~ = ~_~ ~oiTik, (1) 
i=1 

gl 

i=1 

where T/k is the matrix of the transformation T in the basis qg,- and Oik is the matrix 
of  the transformation O in the basis ~pr. Since the transformation T is a hybridization 
transformation, the orbitals ~pr are atomic orbitals. The transformation O is an 
ordering transformation. It changes only the order of the orbitals q~. The O is 
defined in such a way that the transformed Hamiltonian 

H To = O-1T-1HTO (3) 

has the following hypermatrix form in the basis q~/ro. 

HH Hm HtE 
HTO=I HPI Hpp HpE 3. (4)  

~.HEI HEp nEE 

Here, Ht,, He,, and Hee are the Hamiltonian matrices for the internal orbitals, 
pseudo orbitals and external orbitals, respectively. The other submatrices of H r° are 
the Hamiltonian matrices between the corresponding orbitals. The internal and 
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pseudo orbitals are centered on the cluster under study, while the external orbitals 
describe the environment. The problem of embedding is solved if the Hamiltonian 

HC = ( I+1, nip (5) 
He1 Hpp ) 

can be used for the study of the embedded cluster. In the framework of Lrwdin's 
partitioning technique [40,41 ], H c is the unperturbed Hamiltonian, and the neglected 
interaction matrices represent the perturbation. 

In order to define the transformation T in the case of EM1, we introduce the 
oriented sp n hybrid atomic orbital: 

h = ~ (s  + ~t-n(px cos ax + py cOSay + Pz cosaz)), (6) 

where s, p~,, py and pz are atomic orbitals, cos ax, cos a v and cos a~ are the direction 
cosines and n is the p character of the hybrid. In EM1, the transformation T changes 
only the boundary orbitals of the cluster. The other cluster orbitals and the bulk 
orbitals are not changed by T. The pseudo orbitals are boundary orbitals because 
they are centered on the boundary atoms. The other boundary orbitals and the 
orbitals centered on the bulk atoms are called external orbitals. The number of the 
pseudo orbitals is equal to the number of the neighboring cluster atoms of the given 
boundary atom. The pseudo orbitals are hybrid orbitals and are oriented to the 
neighboring cluster atoms. If a cluster orbital is not centered on a boundary atom, 
we call it an internal orbital. In our previous papers [3,4], we used sp s orbitals for 
the pseudo orbitals. An appropriate sp n hybrid orbital may even be useful in a 
purely tetrahedral system as well [27]. A possible theoretical method to determine 
the best n value for the sp n hybrid is the maximum localization rule [8]. The O 
ordering transformation orders the q~r orbitals in such a way that it provides the H r°  

Hamiltonian of eq. (4). The embedded cluster is described by the Hamiltonian H c 

of eq. (5). 
Now we turn to the EM2 case of embedding. In the study of amorphous 

carbon, we used the p orbital axis vector analysis (POAV) to define the f u l l e rne  

orbitals [ 16, 30-33]. The embedded cluster of carbon atoms is composed of threefold- 
coordinated atoms. We associate three h hybrid orbitals to each cluster atom. These 
hybrids are oriented to the neighboring atoms, The orthogonality condition and the 
direction of the orbitals determine the value n in the sp n hybridization. T h e f u l l e r n e  

orbital h ~ is orthogonal to the h hybrids of the given atom. This condition determines 
the direction and the n hybridization of the h ~ hybrid [16,30-33]. We call these 
h ~r orbitals pseudo orbitals. The other cluster and bulk orbitals are called external 
orbitals. Thus, we defined the transformation T. The transformation O is defined in 
the same way as was done for EM1. In EM2, there are no internal orbitals. The 
embedded cluster is described by the Hamiltonian 

H c = Hee .  (7) 
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3. Topologically determined energy levels 

In this section, we shall study the influence of the embedding procedure on 
the topologically determined electronic energy levels. In order to characterize the 
topology of the cluster, we use first-neighbor interaction. In our previous papers, 
we have demonstrated the existence of topologically determined, usually degenerate 
energy levels [ 12, 34, 35]. We used graph-theoretical methods [ 12, 34 -  37] to describe 
the topology. We do not go into details for the EM2 case, which deals withfullerene 
orbitals. We mention here only that the metallic behavior of amorphous carbon 
clusters can be explained by the topological arrangement of the threefold-coordinated 
carbon atoms [ 12]. 

As an example for the EM1 case, we take the embedding problem of Sis, Silt 
and Si29 clusters of  the diamond structure. These clusters are the smallest spherical 
clusters of the diamond structure. In the present paper, we use the Slater-Koster  
tight-binding parameters [38] of Papaconstantopoulos [39]. The diagonal parameters 
of  the Hamiltonian are Hs, = E, = -5.19278 eV and Hee = E t, = 1.05825 eV. The 
topological structures of the clusters under study are presented in figs. 1-3.  

We demonstrated [34,35] that if a cluster of carbon or silicon atoms (or of 
any other atoms with only s and p atomic orbitals) has the partial topological 
structure of  fig. 4, then the multiplicity of  the e = Ep one-electron level is at least 
v (v > 1). Since this property is additive, the multiplicities of the e = Ep energy level 
in the clusters Sis and Si17 are at least 4 and 12, respectively. This multiplicity is 
exact in the first-neighbor approximation and it does not depend on the actual 
positions of the atoms, even if the non-diagonal elements are dependent on the 
positions of the atoms. In numerical calculations, we have found that the multiplicity 
of the e = E e energy levels in the clusters Sis, Sil7 and Si29 are, respectively, 8, 23 
and 0. We changed randomly the coordinates of the atoms and the before-mentioned 
degeneracies did not change. The calculated degeneracies for the clusters Sis, Sil7 
are larger than was expected, because the structure of fig. 4 means only a sufficient 
condition for the existence of the e = E e energy level. We mention here that the 
cluster Si29 contains neither the structure of fig. 4 nor the one-electronic eigenvalue 
e = E e. Naturally, the second and third neighbor interactions split up the degeneracies 
but, in this case too, more than half of these levels are concentrated in a range width 
of 0.5 eV around the value of the Ep level. 

We call the one-electron energy levels that are cleared out from the 
spectrum _ by embedding boundary levels (Eb). The calculated average boundary 
levels Eb are 0.04 eV, 0.06 eV and 0.08 eV, respectively, for the clusters Sis, 
Silt and Si29. For the clusters under study, the following approximate numerical 
relation holds: 

II/ eb  =  .p3 + ( e p  - e p3) , (8)  

where 
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Fig. 1. The topological structure of the Si 5 clusters under study. 

Fig. 2. The topological structure of the Silt clusters under study. 

Fig. 3. The topological structure of the Siz9 clusters under study. 



308 I. L6szl6, Embedding by pseudo atoms 

t 

I 
i 

I 

4 £ zJ 

Fig. 4. A special cluster of  atoms containing s and p atomic 
orbitals. In this cluster, the multiplicity o f  the electronic 
eigenvalue e = E e is at least v (v > 1), if  we use first-neighbor 
interactions in a tight-binding calculation. The dashed lines 
symbolize arbitrary connections between the atoms of the cluster. 
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Fig. 5. Density of  states (DOS) for the Si s clusters. The DOS of the free cluster is 
shown by a solid line. The thick solid line shows the DOS of the embedded cluster. 
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Fig. 6. Density of states (DOS) for the Sil7 clusters. The DOS of the free cluster is 
shown by a solid line. The thick solid line shows the DOS of the embedded cluster. 

. , . . , .  

0 d E N E R G Y  (eV) 
Fig. 7. Density of states (DOS) for the Si29 clusters. The DOS of the free cluster is 
shown by a solid line, The thick solid line shows the DOS of the embedded cluster. 
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Esp3=(E~+3Ep)(4 1 (9) 

is the sp 3 hybrid one-electron energy. From eq. (8), it follows that the boundary 
levels are neither pure p states nor pure sp 3 hybrid states. The calculated density 
of  states (DOS) of  our Si clusters are presented in figs. 5 - 7 .  We used Gaussian line 
broadening that corresponds to the full width of  0.2 eV. From these figures, it is 
clear that the embedding by pseudo atoms provides a shift for the one-electron 
energy levels. The lower levels are shifted up and the higher levels are shifted 
down. 

Summarizing our results for Si clusters, we can say that in the EM1 embedding 
procedure the topologically determined energy levels are cleared out from the spectrum 
and the average boundary energy level Eb is two times nearer to the sp 3 hybrid one- 
electron energy level than to the Ep p electronic level. 
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